After cutting out the bonding wires to the RTC circuit of the CM600DU-24FA IGBT bricks, which we thought could be one of the reasons that we were not able to trip the 1500 A OCD setting, we had a short test run to witness performance. I will do a video with more details of the real-time current control removal later.
While it might have limited the operation a little bit, it was nowhere near hindering performance, this coil is just so high impedance that it runs long on-times instead of high peak currents.
Fed with 3×400 VAC through a variac resulted in a 0.6 power factor. After roughly 8-10 test runs at up to 2 minutes, with peak power consumption hitting 14 kW at 500 BPS, 200uS, the total power consumption over all the tests was 0.281 kW/h, 0.331 kVAr/h and 0.438 kVA/h.
First video shows the coil running 120-500 BPS at somewhere around 200 uS on-time. Peak power consumption from the 3×400 VAC supply was around 14 kW. Sparks are 3 meters to ground and somewhat shorter to the ladder.
Second and third video show tests with a static load, peaking at about 10-14 kW depending on MIDI or interrupter is used.
and
Learn how to make it play music through a MIDI interrupter that can connect a computer to your Tesla coil in order to play music from just the sparks alone. I recommend that you watch my video on how I started by building small Tesla coils up to my very large Tesla coil that can make 4 meter long sparks and play music while doing so.