Handheld 150 Watt Induction Heater on 18650 Batteries

This is a 150 Watt Induction heater that I bought from Ebay at 6 Euro, I avoided the cheapest sellers for the simple reason that they all have bad reviews, so be sure to check that out before just buying …

Read More

Chinese 150 Watt Induction Heater, unboxing and test.

Review and test of a mini induction heater. At just 12V 10-15A you can have a small and effective induction heater for your work bench.

Read More

Chinese 1800 Watt Induction Heater – Horizontal Oven Heat Insulation Test

Test with using regular mineral wool for house insulation, to insulate the work coil in order to achieve higher steel temperatures. Here is another try, unlike the induction heater vertical oven, just with the induction heater horizontal oven. To contain …

Read More

Chinese 1800 Watt Induction Heater – Heat Insulation Test

Test with using regular mineral wool for house insulation, to insulated the work coil in order to achieve higher steel temperatures.

Read More

Chinese 1800 Watt Induction heater, 10 minute stress test at 1500W

This test is being run at 36VDC and everything stays cool over a course of 10 minutes, I would say it can run stable at this power input. The 5 minute test at 40VDC showed resonant capacitors heating up. Test …

Read More

2200 Watt server power supply for induction heating

A new 2200 Watt power supply made from server power supplies, and with steady cameras 🙂 Test of it in a long induction heater run is being edited and will come online in a few days

Read More

Chinese 1800 Watt Induction Heater, 5 Minute Stress Test

5 minute stress test at full power. 1800 Watt peak input power.

Read More

Unboxing a Chinese 1800 Watt Induction Heater

I finally got around to get the IH out of the box and repair it, here is part 1 of a series of videos on this IH. Watch part 2 and the following parts here. This is a 1800 Watt …

Read More

Royer ZVS Induction Heater

Published 18. January 2013. Updated 3. August 2021.


The Mazilli ZVS flyback driver is well-known throughout the high voltage community for its simplicity and ability to deliver 20-50 kV at high currents for a flyback transformer. About one and a half year ago, Marko from 4hv.org gave the circuit a comeback with it converted to a simple induction heater.

To explore all my induction heaters, including the Chinese 1800 Watt induction heater, check out my youtube playlist for all induction heater related projects: https://www.youtube.com/watch?v=N1tg3mQL7lQ&list=PLw4xMO1xCMSUOj19zUmFE2-a2lcFBuzX_. There is also a great thread on High Voltage Forum with details on many ZVS induction heaters and how to use them: https://highvoltageforum.net/index.php?topic=530.0


WARNING!: Working with electricity is dangerous, all information found on my site is for educational purpose and I accept no responsibility for others actions using the information found on this site.

Read this document about safety! http://www.pupman.com/safety.htm



The MOSFETs used need a voltage rating about 4 times higher than the supply voltage and a on-resistance below 150 mΩ. In ZVS operation the switches see a voltage that is π times input voltage, so 4 times rating of input voltage leaves some head room for playing it safe.

If supply voltage gets over 40 VDC, consider using resistors between 470R-800R for the gates. Supply voltage needs to be minimum 12 VDC, lower than 470R gate resistors can be used in that case, if supply voltage dips under 10 VDC, there is a risk of MOSFETs failing from overheating by working only in the linear region or short circuit if one of them stops switching.

Supply voltage should not exceed 60 VDC, as this is very close to 200 VDC across the MOSFET. The internal construction of MOSFETs with a higher voltage rating makes them unsuitable for use in a self oscillating circuit like this Royer oscillator.

A MMC is made from 27 capacitors to avoid excessive heating in a single capacitor. The capacitors will still heat as massive current flows between the tank and work coil. To get a good result, a large tank capacitance is needed, if a capacitance lower than 4 uF is used, results might be disappointing. It is strongly advised to use a capacitor with made from polypropylene (MKP) or similar that can handle large RMS currents, it might even be necessary to water cool the capacitor too. A MMC as the one I use here can only withstand short run times and will even then heat up.

The value of the inductors are advised to be between 45 to 200 uH and depending on core material the number of turns varies a lot, use a LCR meter to check the values.

Water cooling of the work coil is a must! Even at just small runs with moderate power input as the ones I have conducted, the work coil would take damage from heat.


Voltage supply35 VDC smoothed with 40000 uF
MMC3 uF from 9 in parallel strings of 3x 2 275 VAC MKP X2 capacitors in series.
Power consumption650 Watt.
Best resultBetween red hot and white hot M10x20mm bolt





17th January 2013

I succeeded in putting the entire setup together from parts I have salvaged from old equipment, only the MOSFETs was bought new and used before.

The transformer takes 230 VAC in for 32 VAC out, properly around 700 VA transformer estimated from the core size. It is rectified with a 25 A bridge rectifier smoothed with 40000 uF capacitance from four electrolytic capacitors 70 VDC / 10000 uF each.

The inductors are made from ferrite transformer cores from old power supplies. 14 turns of 1,5 mm^2 gave approximately 130 uH inductance.

Two IRFP250N MOSFETs mounted on each their fairly small heat sink, but big enough for the circuit to run for a couple of minutes and only get a little above hand warm. The heat sinks are glued together with a piece of acrylic plastic in-between to insure electrical isolation between the two heat sinks.

The work coil is made from 5 turns of 8 mm copper tubing, giving approximately 0,477 uH. The MMC consists of 9 parallel strings of 3 in series Rifa 1 uF / 275 VAC MKP X2 capacitors for 3 uF. This gives a resonant frequency calculated to about 133 kHz.

Measurements during a run of heating a M10x20 mm bolt at 33 VDC in, 260 VAC at 2.5 A input into transformer.

Resonant frequency is measured to 106 kHz. The measured frequency is different from the calculated as the work piece will influence on the coils electromagnetic properties.

In the following oscilloscope screenshot:

Yellow: Inverter current, here measured to 10 Ampere.

Blue: Inverter voltage, here measured to 100 Volt.

In the following oscilloscope screenshot:

Yellow: Tank current, here measured to 200 Ampere.

Blue: Tank voltage, here measured to 100 Volt.

Three pieces of metal heated to what is possible with input voltage of 35 VDC.

First picture shows a M4x10 mm screw heated red hot at 260 Watt input power, second and third picture shows a M10x20 mm bolt heated red hot at 650 Watt input power.



A good and reliable oscillator as long as supply voltage is kept within safe area of operation for the MOSFETs and only short run times are used unless there is used good components and water cooling on work coil, MOSFETs and capacitors.

Further improvements in use as a heater / melter would be a higher supply voltage.



Royer Induction Heater – First Test

First test run of the Royer induction heater. It is running with a maximum of 650 Watt power consumption. As a result thereof, there is heavy voltage sag on the DC supply. The work load being heated is a M10x20mm …

Read More